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Results from a numerical study examining cross-property relations linking fluid permeability to
diffusive and electrical properties are presented. Numerical solutions of the Stokes equations in
three-dimensional consolidated granular packings are employed to provide a basis of comparison
between different permeability estimates. Estimates based on the A parameter (a length derived
from electrical conduction) and on dc (a length derived from immiscible displacement) are found to
be considerably more reliable than estimates based on rigorous permeability bounds related to pore
space diffusion. We propose two hybrid relations based on diffusion which provide more accurate
estimates than either of the rigorous permeability bounds.

PACS number(s): 47.55.Mh

I. INTRODUCTION

The flow of fluids through random porous media is im-
portant to a wide variety of environmental and technolog-
ical processes. Examples are heterogeneous catalysis, the
containment of hazardous waste in soils, and the extrac-
tion of oil in petroleum engineering [1-3]. Recently, there
has been great interest in understanding the relationship
between the transport of viscous fluids and other pro-
cesses such as electrical conduction, mercury intrusion,
and diffusion-limited trapping [4-7]. Each of these pro-
cesses can be used to estimate the fluid permeability of a
porous material [9-11]. Our aim in this paper is to com-
pare a number of such estimates and to understand why
some can generally be expected to yield more reliable
results than others.

Given a sample of porous material of length L across
which there is an applied pressure difference AP, the
macroscopic flow of a viscous fluid is described by Darcy’s
law [1-3]

v=_227 (1)

where 7 is the fluid’s viscosity and k is the permeability.
Equation (1) is analogous to Ohm’s law for the flow of
electrical current, and k is the counterpart of the effective
conductivity. We emphasize, however, that k depends on
both the tortuosity of the pore space and on the pore
sizes. Indeed, k has the dimensions of area and may be
thought of as representing the cross section of an effective
channel for fluid flow through the pore space. Accord-
ingly, any estimate of k must involve an estimate of the
length scales relevant to fluid flow.

In the present paper our aim is to examine a family of
disordered three-dimensional granular systems and, for
each system, to assemble a number of pore size parame-
ters. By so doing, we hope to test the fundamental ba-
sis for alternate permeability estimation techniques and,
more generally, to illuminate the properties of different
pore length scales. In particular, we will focus on five
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characteristic length scales. First is the pore volume-to-
surface-area ratio, V,,/S [11-13]. Second is the A param-
eter, a length that arises naturally in the description of
interfacial electrical conduction [4]. Third is a critical
channel diameter d. associated with mercury-injection
experiments [5]. The fourth and fifth length scales are
related to diffusion in the presence of perfectly absorbing
boundary conditions at the pore-grain interface [6,7].

In Sec. Il we summarize the basic equations used to
calculate the various pore length scales under considera-
tion. In Sec. III we define the model systems employed
in our study, summarize our numerical techniques, and
present the results of our study.

II. THEORETICAL SUMMARY

A. Kozeny-Carman relation and the A parameter

Suppose we have an insulating porous medium with
porosity, ¢, saturated with a fluid of conductivity oy.
If an electrostatic potential difference, AU, is applied
across the system, the local electrostatic potential, U(r),
satisfies Laplace’s equation, V2U(r ) = 0, with the
boundary condition E(r)-f = —VU(r) - n = 0, where
n is a unit normal vector directed into the grain space.
The total current, J, is then obtained by integrating the
local contributions j(r) = o¢E(r ) and the effective con-
ductivity of the porous medium is J = g.gAU/L (where
L again denotes the length of the system). Useful dimen-
sionless parameters characterizing the effective resistance
to current flow are the formation factor, F', and the tor-
tuosity, a(¢),

—— = = — . (2)

F and «, unlike k, are scale invariant quantities; if we
uniformly magnify or shrink the sizes of the pores and
grains, leaving the porosity unchanged, the values of F'
and o are unaffected. Among the most basic techniques
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for estimating permeability is the Kozeny-Carman for-
mula [11,12]
2
2a

where V, and S denote, respectively, the volume and sur-
face area of the pore space. Here the ratio V},/S provides
a pore scale length and « builds in the tortuosity of the
conducting channels. More recently, Johnson et al. have
suggested replacing V,,/S in (3) by a parameter, A, which
arises naturally in the study of interfacial electrical con-
duction [4

]
|E (r)]? dV,

T (4)

JRLIGIERS

We emphasize that A/2 is generally not equal to V,/S,
which is a geometrical length that can, in principle, be
measured by stereological techniques [13]. Furthermore,
A is a dynamical length determined by the solutions of
Laplace’s equation and cannot be measured by geometri-
cal analysis. Indeed, A is a length that is directly related
to transport; regions of the pore space in which the elec-
tric field vanishes do not contribute to A. The estimate
suggested in Ref. [4] is

A2
G (%)

where the factor of 8 in the denominator is chosen in
analogy with Eq. (3).

| >

B. Percolation and invasion

Ambegaokar et al. [14] and, later, Shante and Kirk-
patrick [15] considered the problem of electrical transport
in networks with very wide distributions of local conduc-
tances. In such systems they argued that the effective
conductivity was controlled by the largest conductances
which form percolating pathways through the network.
Katz and Thompson [5], in adopting these ideas to flow
in porous media, derived the following relation:

cpd?

k=0 ®)
where c is a constant that depends on the distribution of
pore sizes and d. is a critical pore diameter correspond-
ing to the smallest pore of the set of largest pores that
percolate through the medium. The value of c¢ derived
in Ref. [5] was ¢ &~ 1/226. While the form of the above
equation is correct, an inconsistency in their derivation
[16, 17] suggests that the correct value of ¢ should be
larger by a factor between 2 and 4, depending on details
of the pore geometry. It is interesting to consider the
case where there is only a single type pore as opposed to
the broad distribution studied in Ref. [5]. For example,
in the case of a cylindrical tube, ¢ = 1/32, whereas for
a hyperboloid pore segment [18] 1/24 < ¢ < 1/16, de-
pending on the angle of the asymptote of the generating
hyperbola. Thus, for a broad range of pore shapes and
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size distributions c slowly ranges by about one order of
magnitude, thereby making Eq. (6) a reasonably robust
predictor of permeability. In addition, an attractive fea-
ture of this result is that d. can be measured directly in
mercury-intrusion experiments if one assumes that the
Washburn equation [19] can be used to predict the en-
try pressure for each pore channel as mercury invades
the pore space. Katz and Thompson also argued that d.
corresponds to the inflection point of the mercury intru-
sion curve which shows the volume of mercury invaded
Vs pressure.

C. Diffusion bounds

Consider a problem in which My particles are initially
distributed with uniform density in the pore space and
are then allowed to diffuse randomly (with diffusion co-
efficient Do) but are removed as soon as they reach the
pore-grain interface [6,7,20]. Denoting the time depen-
dent population as M (t), this decay process can be rep-
resented by the normal mode series,

M(t)=Mo Y Ine™™ [m2m>73>--],
n=1

(7)
where I,, and 7, are the amplitude and lifetime associ-

ated with the nth mode. The average lifetime (or mean
survival time), (7), can then be written as

<T> = Z L, <7y . (8)

The preceding quantities are of interest in connection
with two recently derived inequalities [6,7] relating the
fluid permeability k& to the diffusion-limited trapping
problem:

k < ¢Do(T), (9)
and
a

Clearly, the utility of the bound (9) is limited by the
fact that () is not directly related to connectivity of the
pore space. If the links between the larger pores were
gradually eliminated, the permeability would rapidly ap-
proach zero while the value of () would not be greatly
affected. In this regard, the bound (10) is more attrac-
tive because o diverges as the pore space becomes dis-
connected. In general, it is not clear which of the above
inequalities provides the more accurate estimate of k. As
the pore geometry becomes more complicated and the.
width of the pore size distribution increases, both the
difference between 7y and (7) and the value of o are ex-
pected to grow. Since it is rigorously true that (1) < 7
[8], then in such instances 7; must get appreciably larger
than (7), implying that bound (9) would be sharper than
(10). This led Torquato and Kim to propose the hybrid
relation [21]

_ ?Do(7)
- [6 4

k (11)

as a candidate to provide a more accurate estimate than
either of the rigorous inequalities (9) or (10). The relation
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(11) was conjectured to be an upper bound on k for a
large class of porous media.

III. NUMERICAL CALCULATIONS
A. Model systems

The first set of model systems we consider is based
on the packing and subsequent consolidation of spheri-
cal grains [22-24]. In the packing stage, spheres (from a
specified size distribution) are dropped into a.box, one
at a time, from a random location above the zy plane.
Each new grain comes to rest either when it hits the floor
or when it comes to a stable resting point in contact with
three other spheres [22]. This algorithm generates high-
porosity, unconsolidated, three-dimensional systems. In
generating the initial packing our aim was to create a
system with a reasonably large spread of pore sizes. Ac-
cordingly, the grain radii were chosen to have one of three
values: R; = 1.0, Ry = (10.0)*/3, and Rz = (100.0)%/3.
The probability for finding spheres with each radius was
specified by requiring that each species contribute equally
to the total grain volume. The model was generated with
periodic boundary conditions in z and y. The size of the
box in the zy plane was 60.0 x 60.0 and final height of
the grain pack was roughly 100.0. The porosity of the
initial packing was ¢ = 0.324 (Fig. 1). In the consolida-
tion stage, the porosity is reduced by simply increasing
the radius of each grain while holding its center position
fixed. This step creates finite-size intergrain contacts and
rapidly reduces the size of the throats connecting adja-
cent pores. To cover as wide a porosity range as possible,
we also treated models in which the grain radii were re-
duced to create suspensions of spherical grains. In this
paper, the radii of all of the spheres were increased (or
decreased) by the same amount at each stage.

Shown also in Fig. 1 is the discretized version of the
model used in our permeability calculations. To make
clear how the grid size was chosen, we examine in Fig. 2
the smallest possible throats formed in the three-sphere
size model. Here the length of the dashed lines, each
of which runs from the center of an R; sphere to the
center of the throat, is 1.155. Thus, a conservative esti-
mate for the throat diameter is 0.309. In the fluid-flow
calculations described below we worked with an interior
30.0 x 30.0 x 30.0 subsection of the original model. This
subsection was digitized to the 2562 binary image (black
represents pore, white represents grain) shown in Fig.
1. Accordingly, the number of voxels across the small-
est throats is roughly 0.309/(30.0/256) =~ 2.6. This is,
again, a very conservative estimate because the throats
shown in Fig. 2 are relatively rare in disordered pack-
ings. We believe that this choice of resolution provides a
reasonably accurate representation of the grain and pore
shapes.

In addition to the system described above, results
on conductivity and permeability will be presented for
three other disordered models based on spherical grains.
The first of these (model A) is constructed from spheres
placed at random in a three-dimensional box of length
100. Because the center positions are random the spheres
overlap from the outset. The sphere diameters were cho-
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FIG. 1. Upper panel: a slice through the unconsolidated
(¢ = 0.324) three-size packing. This figure shows only the
interior 30.0 x 30.0 section used in the calculation of k. Rj3
grains are dotted, R grains are crosshatched, and R; grains
are clear. Lower panel: 256 x 256 representation of the figure
in the upper panel.

FIG. 2. The smallest possible throats formed by three co-
planar R; spheres are shown, together with the interior circle
of diameter 0.309 used to estimate the choice of grid size. The
larger (dashed) circle could have been used to arrive at a less
conservative estimate of the throat size.
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sen from the values {3,7,11,15} with equal probability.
The porosity for model A was varied by adding more
spheres at random and the fluid flow and conductivity
equations were solved on the 1003 grid. In the second
case (model B), 500 monosized spheres were placed at
random on the same 100% grid and the porosity was de-
creased by increasing the grain diameters from 15.0 to
21.0 in steps of 2.0. In model C we again begin with
randomly placed monosize overlapping spheres (diame-
ter 15.0) in the 1002 lattice, but the porosity is reduced
by simply increasing the number of spheres from 500 to
1500.

B. Summary of numerical methods

1. Electrical conductivity

The models described above are clearly too large to cal-
culate the electrostatic potential directly by the solution
of Laplace’s equation. On physical grounds we would like
to get between five and ten grid points across the pore
throats. (In the three-size model described above, this
would correspond to a mesh spacing, ¢, of order 0.01.) In
three dimensions, this leads to networks in which the elec-
trostatic potential would have to be evaluated at roughly
10'% points. It is possible, nevertheless, to evaluate just
oesi(¢P) at this level of precision by simulating diffusion
within the pore space and employing the Einstein rela-
tion [24,25]

lim P@ = lim (r*(t)) = ! = :
T tooo 6Dot  a(¢)  SF(¢) ]

where (r2(t)) is the mean square displacement of a ran-
dom walker moving through the pore space with reflect-
ing boundary conditions at the pore grain interface. Cal-
culating (r2(¢)) with the random walk step sizes of order
0.01 presents no computational problem because there is
no need to store intermediate data on a large grid.

In the three-size-sphere pack model the A parameter
can be evaluated from the identity [4]

2 S dm[F] _
AV, dinfg]

(12)

t— oo 0

S
m(o) v (13)
This equation is applicable because the porosity was var-
ied by changing the sphere radius in uniform increments.
From a computational viewpoint, Eq. (13) reduces the
evaluation of A to the calculation of the porosity depen-
dence of the formation factor, F', and the computation
of V;,/S. In isotropic systems the calculation of V,,/S in-
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volves the statistics of random lines intersecting with the
pore-grain interface and is straightforward [13].

As a final point, let us consider briefly the sensitivity
of our calculations to the choice of random walk step size.
In Table I we compare our conductivity calculations with
calculations carried out using the step size dictated by the
grid employed in the fluid-flow calculations. Clearly, the
effects are significant and become more important as we
go to lower porosities. While the 2562 lattice described
above may not be appropriate for conductivity calcula-
tions, we believe that it is quite adequate for the fluid-
flow problem. Stokes flow is controlled by the largest
connected channels where the lack of resolution is not
terribly important. By contrast, electrical low is more
democratic, all channels contribute, and the many small
pores and throats must be treated accurately.

2. Fluid flow

In the limit of slow incompressible flow, the Navier-
Stokes equations reduce to the linear Stokes equations

nV3v(r) = Vp(r), (14a)

V.v(r)=0, (14b)

where v and p are, respectively, the local velocity and
pressure fields, and 7 is the fluid viscosity. The fluid ve-
locity must vanish at pore-grain interfaces (the so-called
no-slip boundary condition) and a prescribed pressure
difference at the inlet and outlet faces is assumed. To
numerically solve the Stokes equations, we used a finite-
difference scheme in conjunction with the artificial com-
pressibility relaxation algorithm [10,26]. The pore space
is discretized into a marker-and-cell mesh [26], where
pressures are defined at the nodes and fluid velocity com-
ponents are defined along the center of bonds connecting
nodes. Each voxel representing either pore or solid is
centered on a node. Near the pore-grain interface, non-
centered difference equations are used to improve the ac-
curacy of the solution and to force the fluid velocities to
zero at the interface. As a result, velocity profiles across
voxels are accurate to at least second order [27]. The per-
meability of the porous medium is calculated by volume
averaging the local fluid velocity and applying the Darcy
equation (1).

The algorithm employed to construct the three-size-
sphere pack does not automatically generate models that
are isotropic. (By contrast, models A, B, and C are in-
herently isotropic.) Because each grain comes to rest
after finding a configuration that is stable relative to

TABLE I. The sensitivity of the electrical formation factor F' to the random walk step size is
illustrated. Our unit of length is the radius of the smallest sphere in the original packing, R; = 1.0.
AR ¢ € F € F % change
0.00 0.324 0.02 4.85 0.1172 5.53 14
0.10 0.219 0.02 9.13 0.1172 10.95 20
0.15 0.174 0.01 13.41 0.1172 17.63 31
0.25 0.101 0.01 40.88 0.1172 58.59 43
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the applied “gravitational” force, it may turn out the
throats encountered along vertical trajectories are some-
what smaller than those encountered along horizontal
flow paths. To some extent this effect is mitigated by
the fact that the velocity field bends and winds around
the grains, so that the effective trajectories involve a com-
bination of vertical (z) and horizontal (z,y) motion. In
the present series of calculations the pressure gradient
was imposed along the z axis at each porosity. At four
porosities the calculations were repeated for flow along
the y and z directions and the combined results are pre-
sented in Fig. 3. We see that over most of the porosity
range the effects of anisotropy on the calculated perme-
ability are fairly small. Even at the lowest value of ¢, the
permeabilities calculated for flow in the = and z direc-
tions differ by only a factor of 2. (In natural sediments
the vertical and horizontal permeabilities can differ by
several orders of magnitude.) The electrical conductivity
for this model is also expected to exhibit some degree of
anisotropy, although we expect the effect to be consider-
ably smaller than it is for the permeability.

3. Percolation: d.

A detailed simulation of mercury intrusion in random
porous media is very complex because it entails the de-
termination of the local curvature of the mercury inter-
face and an understanding of the motion of the mercury
contact line [2]. Here, two boundary conditions must be
satisfied. The first is AP = 2v/r, where AP is the pres-
sure drop across the interface, -y is the surface tension,
and r = 2ryr3/(r1 +7r2) where ry and r; are the principal
radii of curvature at the interface. The second condi-
tion is that a contact angle 6. be maintained in order

R®’=10 R’=100 RS =1000
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FIG. 3. The calculated permeability is shown as a func-

tion of porosity for the three-size-sphere pack model. At four
porosities results are shown for flow in the z, y, and z direc-
tions.

to balance surface tension forces, thereby guaranteeing
a stable configuration of the interface. Clearly, a simu-
lation of this process for the models of interest here is
not presently feasible. We instead model the mercury-
intrusion process using an extension of the geometrical
algorithm developed by Garboczi and Bentz [28]. Here
we simply ask, what is the diameter of the largest sphere
that can pass through a given porous medium? Such an
invading sphere is roughly equivalent to the injection of
a perfectly nonwetting fluid (. = 7). In the present ap-
plication, spheres with a specified diameter are placed on
one side of the porous medium and allowed to progress
through the system until they reach a pore that cannot be
traversed without overlapping the interface. The radius
of the spheres is then decreased by one lattice spacing
and their motion through the pore space continued until,
once again, they encounter pores that cannot be crossed
without overlapping the interface. This process is con-
tinued until a sphere passes to the opposite side of the
medium. The diameter of that final sphere is taken to be
an approximation to the length scale d..

4. Diffusion bounds

The quantities (7) and 7; were calculated us-
ing random-walk simulations with perfectly absorbing
boundary conditions. The evaluation of (7) simply re-
quires calculating the mean time required for a walker to
reach the pore-grain interface [9,11]. To evaluate 7 we
calculated the function M (t) defined in Eq. (7) and fit its
long-time behavior to a single exponential decay. Thus,
in a graph of In[M(¢t)] vs t, we look for linear behavior
as t — o0o. Cleary, this approach is limited by the fact
that all of the walkers in the simulation are eventually
killed at the interface, so that M(t) = 0 after a finite,
but large, number of time steps. Nevertheless, if on the
order of 10 walkers are employed in the simulation, we
are able to obtain reasonably accurate estimates of 7.
Because the slope of the M(t) can only increase (i.e., be-
come less negative) as ¢ — oo, our results represent an
underestimate of 7.

C. Results

The results of our calculations on the three-size-sphere
pack model are summarized in Table IT and Figs. 4 and
5. It is clear from these results that the permeability
estimates based on the A parameter and on the mercury-
intrusion length, d., are the most reliable. This is not
surprising because these estimates are constructed di-
rectly from transport parameters that are related to the
three-dimensional connectivity of the pore space. By con-
trast, the bound based on (7), Eq. (9), does not readily
distinguish between isolated and interconnected pores.
The tortuosity «, which appears in bound (10), gener-
ally incorporates transport information, but the bound
¢DoT1/a is, nevertheless, considerably weaker than the
¢Do(7) result over the porosity range studied. This re-
flects the fact the the model contains some very large
pores that have little influence on transport but tend to
drive 7; to relatively large values, as discussed earlier. At
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TABLE II.

4589

The parameters defining the three-size-sphere pack model are summarized in this

table together with the results of our numerical simulations. Across each row the first three entries
are geometrical parameters; the next entries are dynamical quantities calculated as described in the
text. F is dimensionless, A and d. are lengths, and Do(7) and Do7; have the dimensions of area.
Our unit of length is the radius of the smallest sphere in the original packing, R; = 1.0.

AR ¢ V,/S F 100k A de Do(7) Domy
-0.250 0.554 0.746 2.27 3.40 0.995 1.35 0.165 0.447
-0.150 0.473 0.537 2.78 1.69 0.716 1.11 0.115 0.395
-0.075 0.403 0.405 3.45 0.893 0.579 1.05 0.088 0.354

0.00 0.324 0.292 4.85 0.426 0.417 0.82 0.069 0.302

0.10 0.219 0.233 9.13 0.130 0.310 0.63 0.051 0.237

0.15 0.174 0.205 13.41 0.0624 0.256 0.59 0.044 0.211

0.25 0.101 0.168 40.88 0.0090 0.168 0.41 0.034 0.192

the lowest porosity studied, ¢pDo(7) = ¢Do71/ and the
corresponding curves in Fig. 4 cross. (This crossing is
to be expected as ¢ — 0.) Similar behavior is seen in
Fig. 6 where results for model A are presented. Here
we do not have calculations of the A parameter, but the
other permeability estimates follow the same trends as in
Fig. 4. [The jagged behavior of the ¢d.?/(32a) curve is a
consequence of the discrete nature of the calculation and
its relatively poor resolution.] It is seen that the quan-
tity ¢Do(7)/a in Eq. (11) is indeed an upper bound for
this model and is a better estimate than either ¢Do(T)
or $Do71/cx.

Two additional points are worth making in connec-
tion with Figs. 4 and 6. First, over the porosity range
of greatest interest the Kozeny-Carman relation (3) pre-
dicts the permeability more accurately than any of the
diffusion-based estimates. Second, we observe that the
diffusion-based estimates can be improved by suggesting
hybrid relations that, while not providing rigorous upper

R’=10 R}’=100 RS =1000
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FIG. 4. The five permeability estimators described in the

text are compared with the calculated k values for the three-
size-sphere pack model.

bounds, are much more consistent with our simulation
data. Examples are k ~ ¢?Do(7)/a and k ~ Do7y/F?.
In practice, for the models considered here, both provide
a substantial improvement over the earlier predictions.
The first of these relations differs from the bound pro-
posed in Eq. (11) by an additional factor of ¢, which may
be interpreted as being related to the number of avail-
able paths for fluid flow. As the porosity decreases, fewer
paths significantly contribute to the total flow paths. The
second relation is, in fact, similar to the k ~ ¢*T,2 for-
mula used to estimate permeability from nuclear mag-
netic resonance (NMR) measurements on reservoir sand-
stones [11]. (Here T} is the longitudinal lifetime and for
these systems ¢* ~ F~2.) In sandstones the enhanced
spin relaxation at the pore grain interface is weak and
T, ~ V,/S [11] so that T? is proportional to length
squared, the proper dimension for permeability. In the
present case we are in the strong relaxation limit and 7
is proportional to a?/Dy, where a is some effective pore

R°=10 R’=100 R,°=1000
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FIG. 5. Three additional permeability estimators de-

scribed in the text are compared with the calculated k values
for the three-size-sphere pack model.
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FIG. 6. Four permeability estimators described in the text
are compared with the calculated k values for model A.

size. The predictions of these two estimators are shown in
Fig. 5, together with the results of the Kozeny-Carman
relation (3), which are shown for completeness.

Finally, in Fig. 7 we examine the relationship be-
tween conductivity and permeability for the models stud-
ied here. At the lowest porosities the data are generally
consistent with a slope of 1.8, as predicted by Halperin
et al. [29]. This may be fortuitous since the data shown
in Fig. 7 are not in a critical regime as assumed in Ref.
[29]. Perhaps more relevant is the fact that these data
are roughly consistent with the relation k ~ o%; over the
range porosities studied. This relation was predicted by
Wong et al. [30] based on the analysis of network models.
It is quite interesting to see similar results emerge from
a rather different set of models. Indeed, our experience
with a number of related models indicates that this trend
may describe a fairly wide class of disordered materials.

IV. SUMMARY AND CONCLUSIONS

(1) A unified set of transport and diffusion calcula-
tions have been carried out on a family of realistic three-
dimensional model porous media.

—In(F)

FIG. 7. Permeability vs conductivity results are cross
plotted for the four models described in the text.

(2) For the models studied here the length scales A
and d. provided an excellent estimate of the permeabil-
ity, k, to viscous fluid flow. However, the A parameter is
probably the most difficult quantity to measure experi-
mentally.

(3) Estimates of k based on rigorous upperbounds to
the permeability were considerably less reliable; their ac-
curacy decreased with decreasing porosity.

(4) Hybrid equations have been suggested that improve
the prediction of & from diffusion-based parameters.

(5) The relation k ~ o.g? suggested by Wong et al. [30]
appears to be valid over the entire range of porosities and
model geometries studied.

(6) The model systems studied here, while disordered,
are fairly homogeneous. Further research is required on
heterogeneous materials, including systems with several
distinct channels for transport [31-33].
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